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OF AN INTERNAL WAVE SOURCE MOVING IN AN 
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The uniform asymptotic form of the far field of a linear gravitational internal wave source which moves uniformly and reetilinearly 
along the horizontal in an homogeneous, horizontally exponentially stratified medium is constructed. The expression obtained 
enable one to find this asymptotic form for any mutual arrangement of the source and the observation point. Copyright © 1996 
Elsevier Science Ltd. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A spacex, y, z is considered which is filled with an exponentially stratified, ideal, incompressible fluid with a density 
distribution p(z) = P0 exp(--~z) and the field, excited by a dipole mass source, which moves in a negative direction 
along the x axis at a constant velocity V. It is assumed that the source is switched on and commences its motion 
at t = 0. Then, when t ---> ** and in the case of fixed { = + Vt, y, z (that is, for a fixed position of the observation 
point relative to the source), the field tends to a finite limit. If the dipole is orientated along thex axis and has unit 
moment, the limiting values of the elevation ~ and the horizontal components of the velocity ux, uy have the form 
[1] 

;= O~3z" Ux= 13g ) 3g - k392+k2 -~-y (1.1) 

expi(~+~v+ylzl)dotd~ = 1 /(~2 +[~2)(k2 _cc2) (1.2) 
- 8n2V 2 -~  ~](a~_ +132)(k 2 _ a 2 )  

where k = ~l(6g)/V andg  is the acceleration due to ~avity. The arithmetic value of the root is understood to be 
~/(k 2 _ a2) when k 2 > o~rand i~(¢~2 _ k 2) when k 2 < a2. 

The problem of determining the asymptotic form of the field in the far zone, that is, when r = ~/({2 + y2 + z 2) 
>> 1, is formulated. 'Ilais asymptotic form has been obtained in [1] for the case when the phase function ~ = 
+ I~Y + ~z has stationary points, that is, when { > 0. The results in [1], however, are inapplicable when { ---> 0, that 
is, in the neighbourhqxxt of a plane which passes through the source and is perpendicular to its trajectory (a transverse 
plane) and when z --> 0, that is, in the neighbourhood of the horizon of the source. The purpose of this paper is 
to construct the asymptotic form of the far field which is applicable to any kr >> 1 and ~,y, z. 

2. T H E  A S Y M P T O T I C  F O R M  O F  T H E  F A R  F I E L D  S U B J E C T  T O  I kz I 
H A V I N G  A L O W E R  B O U N D  

We transform the integral for G. This integral can be written in the form 

G = ~ R e ~  dec ~T(o~,~)d~ 

with the same integrand as in (1.2). Putting ~ = r cos 0, y = r sin 0 cos 9, z = r sin 0 sin 9 (0 < 0, 9 < r0 and 
changing to the variables of integration p = d/k; q = 13/a, we obtain 

-I i dp i '  e x p ( i k l ~ ) I  dq (2.1) G = ReQ; Q = ~  ~ - ~  • l + q  2 
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We now find the non-uniform asymptotic form Q as kr---) oo and for fixed 0 ~ 0, ~/2; ~; tO* 0, g. This asymptotic 
form is determined by the stationary point T1 = (sin to cos 0, --cos to ctg 0) of the phase function • within the 
domain of integration and the stationary point T2 = (0, 0) on the boundary of this domain and has the form 

Q=_ exp(ikrsinto))~(cosO) + expi~14+krsingsinO) (2.2) 
• 9 9 ) 3 

2nV2kr~/I - sin- tocos- 0 V- (2r~kr)~ ~ tosin 0 cos0 

The first term is the contribution of the stationary point T1 and the second is the contribution of the stationary 
point T2. The function Z(cos 0) = 1 when cos 0 > 0, that is, when this point is within the domain of integrationp 
> 0 and makes a contribution to the asymptotics form Q; Z = 0 when cos 0 < 0, that is, when this point is outside 
the domain of integration. Hence, in the rear half-space ~ > 0 (with respect to the direction of the motion of the 
source), the field decreases when r ---) oo as r -1, while in the front half-space it decreases more rapidly as r -3/2. 

The asymptotic form (2.2) is inapplicable when cos 0 ---) 0, that is, for small ~ = x + lit in the neighbourhood 
of the transverse plane and when sin to sin 0 ---) 0, that is, for small I kz I = kr sin 9 sin 0 in the neighbourhood of 
the horizon of the source. We now write out the asymptotic form which is applicable close to the transverse plane, 
that is, which describes the transition from the front half-space to the rear half-space. 

When cos 0 ~ 0, the stationary point T1 tends to the boundaryp = 0 of the integration domain. Since T1 is the 
point of a local maximum in the phase function, the uniform asymptotic form G is expressed [2] in terms of 
the complex conjugate Fresnel integral. In order to obtain this integral, it is necessary to replace the function 
Z(cos 0) by the expression 

F * ( ~ s i n O t l  4 -OI  2))+ expi(~/ a -  2k"sintosin2(Ttl 4 -OI  2)) 
2 ~  sin(re / 4 - 0 / 2 )  

where F*(rl) is the complex conjugate Fresnel integral 

e x p ( ~ i / 4 )  ~ 
F*(n) = f f~ ~ exp(-is2 )ds 

As a result, we obtain 

G = ReQ = Re[  
e x p ( i k r s i n t o ) F * ( ~ s i n ( n /  4 - 0 / 2 ) )  

21cV2krll~ - • • ~ sin- tocos- 0 cos0 

[ ]] + exp(rd/4+ikrsintosinO) if{--sin tocos'0 - s i n ( r ~ / 4 + 0 / 2 ) ~  

- ,~  . , 9 ") 
V 2 (2gkr) ~ 4smtosin 0(1 - s in -  to cos- O) cosO 

(2.3) 

This expression is applicable for values of 0 close to n/2 and, when the argument of the Fresnel integral is large, 
it is asymptotically equivalent to (2.2). It is inapplicable, however, when sin 0 sin 9 ---) 0, that is, close to the horizon 
of the source. 

3. T H E  A S Y M P T O T I C  F O R M  O F  T H E  F A R  F I E L D  I N  T H E  F R O N T  
H A L F - S P A C E  F O R  S M A L L  I kz  [ 

Before constructing this asymptotic form, we transform the integral with respect to q in (2.1). We put (q = sh t) 

.( ,~ dq 

I t  can be shown by a shift with respect to t that, when ~2 _ 152 = ~ _ 82, the equality F(~, li) + F(~, 8) holds. 
The integral with respect to q in (2.1) can therefore be written in the following equivalent forms 

7 
- -  - ~ J ~ / l + q -  

= 7 exp ikrsin0 pq+ laf i~q 2 J J 4 l + q  2 _. [ .  ( <,_. - 
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= ~exp[ ik , 's inO(qcosg+~( l -p2)( l+q 2 ) )]41 dq' , 
- .  +q- (3.1) 

Using the first of llhese equalities, we write 

Q= 4~2v2' i ~dl--~' _.J' ~xpik,-[,,,~osO+qsi,,o,+~/,+,#.,inO~i,~lj~/,+q2 ~ (3.2) 
Here, by analogy 'with formula (1.2), whenp  > 1, "](1 _p2) is understood as being the quantity i~/(p 2 - 1), that 

is, the branch pointp = I of the function ~/(1 _p2) is circumvented in the lower half-plane during the integration. 
We now transform the integration path in (3.2) into the half-linep = t exp(-il]) (where 0 < t < oo) in the complex 

p plane and the line ~ < q < ~, into a contour, consisting of the half-lines q = i + t when --oo < t < 0 and q = i 
+ t exp(i00 when 0 < t < % where ct > 15. With this choice of integration contours and, when cos 0 ~< 0, the 
exponential function in (3.2) will have a negative real part, the integral will be absolutely convergent when I P l, 
I q I ~ 00 and the order of integration in (3.2) can be changed. When kr >> 1, the inner integral (with respect top)  
is then calculated asymptotically and, for G = Re Q, we obtain 

-I . exp(ikr~sinOsintp)dq 
G 4n2V2krlmS @ +q2 (cos0+qsin0) + O(kr) -3 

where the pole q := --ctg 0 is circumvented in the upper half-plane. This function can be written in the 
form 

G - - ~ l m  I exp ikz I 
81r V'kr _.0 ~ ~ cos0+qsin0 

= ~ l m L  ~/l'+q2(cos20_q2sin20) 

+ cos0-qs in0  dq= 

(3.3) 

where the pole q = -ctg 0 is circumvented in the upper half-plane and the pole q = ctg 0 is circumvented in the 
lower half-plane. 

We will now prove that 

cos01m ~_. exp(i~l~q2)dq = - 2 ~ [ ~  +,~, ([-ctg-[7)j~(0~n J~n (~)] (3.4) 
~ ( c O s  20--q 2 sin 2 0) 

where Y2~ is a Bessel function. Denoting the left-hand side of (3.4) is F(~, 0), we have 

Hence, F(~, 0) can be found as the solution of the equation 

F+sin 2 0 ~  = ncos0J0(~) 
at 

which tends to zero as I ~ I ~ oo (which follows from the rule for circumventing the poles in integral (3.3) which 
has been formulated above). Formula (3.4) is now verified by direct computation using well-known formulae (see 
[3, formulae 8.471]) for the derivatives of Bessel functions. 

Hence, when kr 3, 1 and cos 0 ~< 0, we have obtained the following asymptotic expression for G 

] I [Jo(kz) -c tg--~  _ G = ~ [ .  2 +,~,  Jg,,(kz) +O(kr)- (3.5) 

This expression i,; convenient to use for small kz, that is, J2~(kz) tend to zero exponentially with respect to n 
when n > kz/2 and it suffices to take a relatively small number of terms in the series with respect to n. For example, 
when kz = 4, we have 
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.10(4) = -0.3971 ./4(4) = 0.281 I ./~(4) = 0,0049 

.12(4) = 0 . 3 6 4 1  .16(4) = 0 . 0 4 9 0  . I i o ( 4 )  = ().()(X)2 

and it is sufficient to take 3-4 terms in series (3.5). The multiplier ctg~(0/2) is an additional factor in the convergence, 
since ctg(0/2) < 1 when n/2 < 0 < n. If l kz I > 4, the asymptotic expression (2.2) provides sufficient accuracywben 
the values of I c o s  0 1 h a v e  a lower bound while (2.3) provides sufficient accurately for small I c o s  0 I. 

4. T H E  A S Y M P T O T I C  F O R M  O F  T H E  F A R  F I E L D  I N  T H E  R E A R  
H A L F - S P A C E  

We now consider the values cos 0 > 0. Integral (2.1), after making the substitutionp, q -~ -p, -q, can be written 
in the form 

where 

_ -1 ~ d / , -  ~ explikl~l~l ) dq G=ReQ:  Q=Q(r'O'tP)-4~-V2 ~ . ' ~ l - p -  

~1 = -pcos0  + pqsin 0coscp + ~/(1 - p2 )(I +q2 ) sin 0sin tp 

On the other hand, it is obvious that 

with the same function q~l. Hence 

a n d  

Q(r,O,tp)+Q(rAz-O, tp) = l(r,OAp) = - - -  

4 9 2 V  2 
. dp ~ exp(ikrtl~ I ) dq 

G(r,0,q~) = -G(r,g-O,tp)+Rel(r,OAp) 

Since the asymptotic form G when 0 > rd2 is already known, it is sufficient to find the asymptotic form L We 
make use of the second equality in (3.1) after which we change the order of integration. The asymptotic form of 
the integral with respect top  can then be found by the stationary-phase method, after which we obtain 

exp(-Tti14) ~exPEikr(qsinOc°s~P+~/l+q2sin20)ldq 
1= ~ 2 ~--- = 

(2n) r- V ~/kr -= (I +q2 sin 2 0)~ l ~ q 2  

• [( 
• ~ dq =/I = - e×p( -~ i /4 )  7 exp tkr qcos~+ 

- ~  I 2 (2g)~ V2 x/k'7 " (1 +q2 )~ ~/sin 0+q  2 

In the case of I sin 0 I, which has a lower limit, that is, far away from the half-plane ~ > 0, the asymptotic form 
of the integral I1 is calculated using the stationary-phase method 

1 exp(ikrsintp) 

2~V2kr~/l -sin 2 tpcos 2 0 

G(r,0.tp) = G I (r,0,tp) = - cos(krsintp) 
2nV2kr~ll -sin 2 tpcos 2 0 

L 2 7J J:'' 

- G2 (r,0,t p ) (4.1) 

When [ sin 01 --+ 0 and the values of I cos tp I in the integrand in 11 have a lower bound, the two branch points q 
= - i  sin 0 tend to the real axis and it is necessary to take account of their contribution to the asymptotic form L 
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In the principal  te rm of  the asymptotic form, this contr ibution is described by the model  integral  

7 exp(ikrqcosto)dq = 2K0(krs in0cos to)= 2K ° (k3.,) 
- ~  ~/sin2 0 + q  2 

where Ko is a Bessel function with an imaginary argument  (see [3, formula 3.754]). Hence  

c o s ( k r -  g / 4)K 0 (ky) 
G(r ,0 , to)= G I -~ 2 ~v 

(4.2) 

The second term is only important  when I /~  I is bounded.  When  I ~ I -> 0, it increases logarithmically. 
The asymptotic form writ ten out  above is inapplicable for  small I sin 01 and I cos to I. In this case, the stat ionary 

point  q = --ctg tO turns out  to be dose  to the branch points q = - i  sin 0 and the following function, which does 
not  reduce to well-known special functions, is the model  integral 

W(~,~)= 7 exp[ i (x-a)2]r 'b" 
-,~ ~f~2 +X 2 

(4.3) 

The asymptotic form G for small I sin 01 and I cos to I is 

o. , o . , :  -'2/)] K e /  , W l ~ l z r r c o s - ~ s l n l - : - . ~ l  , 2-v/2-~sin cos - + 
21l) V2 L %/kr(i+sintocos0) t, z t,.<,i, z /  

+ G2(r, O, to) 

The quantity (kr) 1/4 i8 the criterion of the smallness of sin 0 and cos 0 in the above estimates. 

(4.4) 

5. C O N C L U S I O N  

We will now formala te  the results which have been obtained.  A function G has been considered which has the 
integral representat ion (1.2). The field of  the l inear internal  gravitational waves, excited in a horizontally stratified 
medium with a density distribution p(z) = P0 exp(-~z)  with a dipole mass source of unit  moment ,  or ienta ted along 
t hex  axis and which moves along t hex  axis in a negative direction at a velocity V, is expressed in terms of G using 
formulae (1.1). The asymptotic for of G when ~ = x + lit = r cos 0; y = r sin 0 cos to; z = r sin 0 sin to, k = ~](og)/V 
and kr >> 1 is described by the following expressions. 

> - i t 4  m When [ z [ > ~l(r/k), [ cos 0 [ (kr) , that  is, far fro horizontal plane of the source z = 0 and the transverse 
plane 0 = rd2~ it is dlescribed by formula (2.2). 

Close to the transverse plane 0 = lrd2, but  beyond the horizon of the source, that  is, when I cos 0 [ < (kr) -1/4, [ z 
I > ~J(r/k), it is desciTibed by formula (2,3). Close to the horizontal plane of the source in the front half  space, that  
is, when [ z [ > ~[(r/k), rd2 < 0 < It, it is described by formula (3.5). 

Close to the horizontal  plane of the source in the rear  half-space but  far from the half-axis ~ > 0, that  is, when 
[ z [ > ~l(r/k), 0 < 0 < ~d2, sin 0 > (kr) -1/4, it is described by formula (4.1). 

In the neighbourhood of the half-axis ~ > 0, that  is, when 0 ~ sin 0 < (kr) -1/4, it is described by formula (4.2) 
when cos to > (kr) -1;4 and by formula (4.3) when cos to < (kr) -1/4. 
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